	Binary 2-covering array	

Structures and lower bounds for binary covering arrays

Soohak Choi (Hyun Kwang Kim and Dong Yeol Oh)

Institute of Mathematical Sciences, Ewha Womans University

November 16

Soohak Choi (Hyun Kwang Kim and Dong Yeol Oh) Structures and lower boundsfor binary covering arrays

Introduction	Binary 2-covering array	
000000		
Notations		

Notations

■
$$B_q = \{0, 1, ..., q - 1\}.$$

■ For $u = (u_1, u_2, ..., u_n) \in B_q^n$,
■ $\supp(u) = \{i \mid u_i \neq 0\}.$
■ $wt(u) = |supp(u)|.$
■ $[n] = \{1, 2, ..., n\}.$

• For
$$C = (c_{ij})$$
 over B_q , c^i is the *i*-th column of C .

Soohak Choi (Hyun Kwang Kim and Dong Yeol Oh) Structures and lower boundsfor binary covering arrays э

<ロ> (日) (日) (日) (日) (日)

Introduction	Binary 2-covering array	
o ●ooooo		
The covering array		

Definition

An $m \times n$ matrix C over B_q is called a *t*-covering array (or, a covering array of size *m*, strength *t*, degree *n*, and order *q*) if, in any *t* columns of C, all q^t possible *q*-ary *t*-vectors occur at least once. We denote such an array by CA(m; t, n, q).

Example

The following matrix is a 2-covering array over B_2 .

Introduction	Binary 2-covering array	
o ●ooooo		
The covering array		

Definition

An $m \times n$ matrix C over B_q is called a *t*-covering array (or, a covering array of size *m*, strength *t*, degree *n*, and order *q*) if, in any *t* columns of C, all q^t possible *q*-ary *t*-vectors occur at least once. We denote such an array by CA(m; t, n, q).

Applications

- circuit testing,
- intersecting codes,
- data compression.

Introduction	Binary 2-covering array	
o o●oooo		
The covering array		

- The main problem is to optimize one of the parameters m and n for given value of the other:
 - (a) find the minimum size CAN(t, n, q) of a *t*-covering array of given degree *n* over B_q ;
 - (b) find the maximum degree $\overline{CAN}(t, m, q)$ of a t-covering array of given size m over B_q .
- $q^t \leq CAN(t, n, q) \leq q^n$.
- Rènyi (for *m* even), and independently Katona, and Kleitman and Spencer (for all *m*) showed that $\overline{CAN}(2, m, 2) = \binom{m-1}{\lfloor \frac{m}{2} \rfloor 1}$.
- Johnson and Entringer showed that $CAN(n-2, n, 2) = \lfloor \frac{2^n}{3} \rfloor$.
- Colbourn et al. give all the known upper and lower bounds for covering arrays up to degree 10, order 8 and all possible strengths, but their classification results are much more limited.

Introduction	Binary 2-covering array	
o oo●ooo		
The covering array		

(G. Roux 1987)

$$CAN(t+1, n+1, q) \ge qCAN(t, n, q),$$

 $CAN(3, 2n, 2) \le CAN(3, n, 2) + CAN(2, n, 2).$

Soohak Choi (Hyun Kwang Kim and Dong Yeol Oh) Structures and lower boundsfor binary covering arrays Institute of Mathematical Sciences, Ewha Womans University

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ● ●

Introduction	Binary 2-covering array	
o 000●00		
The covering array		

Example

The following matrix is a 2-covering array over B_2 .

Soohak Choi (Hyun Kwang Kim and Dong Yeol Oh) Structures and lower boundsfor binary covering arrays Institute of Mathematical Sciences, Ewha Womans University

3

・ロト ・聞 ト ・ヨト ・ヨト

Introduction	Binary 2-covering array	
o 0000●0		
The covering array		

Example

1	0	0	0
1	1	1	1
0	1	0	0
0	0	1	0
0	0	0	1

Permutation of the rows

Permutation of the columns

Permutation of the values of any column

Soohak Choi (Hyun Kwang Kim and Dong Yeol Oh) Structures and lower boundsfor binary covering arrays Institute of Mathematical Sciences, Ewha Womans University

Introduction	Binary 2-covering array	
0 00000		
The covering array		

Definition

Two covering arrays C and C' are equivalent if one can be transformed into the other by a series of operations of the following types:

- (a) permutation of the rows;
- (b) permutation of the columns;
- (c) permutation of the values of any column.
 - Katona proved that maximal binary covering arrays of strength 2 are uniquely determined up to equivalence.
 - Johnson and Entringer showed that $\lfloor \frac{2^n}{3} \rfloor \times n$ binary covering arrays of strength n 2 are uniquely determined up to equivalence.

	Goals	Binary 2-covering array	
	•		
Goals			

Goals

- Classify the structures of some optimal binary 2-covering arrays.
- Improve the lower bound of Roux on CAN(t, n, q) when t = 3, q = 2.

	Binary 2-covering array	
	•00	
Binary 2-covering array		

For
$$u \in B_2^n$$
, $\overline{u} = (\overline{u}_1, \ldots, \overline{u}_n)$ where

$$\overline{u}_i = \begin{cases} 1, & \text{if } u_i = 0; \\ 0, & \text{if } u_i = 1. \end{cases}$$

•
$$u \in B_2^n \Leftrightarrow \operatorname{supp}(u) \subseteq [n]$$

The following statements are equivalent.

- *C* is a binary *t*-covering array.
- $\bigcap_{k=1}^{t} X_{i_k} \neq \emptyset$ for $\{i_1, \ldots, i_t\} \subseteq [n]$, where X_k is either supp (c^k) or $supp(\overline{c^k})$.

	Binary 2-covering array	
	000	
Binary 2-covering array		

$$C = \begin{array}{ccccc} c^1 & c^2 & c^3 & c^4 \\ 1 & 1 & 1 & 1 & 1 \\ 2 & 1 & 0 & 0 & 0 \\ 3 & 0 & 1 & 0 & 0 \\ 4 & 0 & 0 & 1 & 0 \\ 5 & 0 & 0 & 0 & 1 \end{array}$$

$$\begin{aligned} & \mathsf{supp}(c^1) = \{1,2\} \\ & \mathsf{supp}(c^2) = \{1,3\} \\ & \mathsf{supp}(c^3) = \{1,4\} \\ & \mathsf{supp}(c^4) = \{1,5\} \end{aligned}$$

Soohak Choi (Hyun Kwang Kim and Dong Yeol Oh) Structures and lower boundsfor binary covering arrays Institute of Mathematical Sciences, Ewha Womans University

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ の < @

	Binary 2-covering array	
	000	
Binary 2-covering array		

$$\begin{aligned} & \mathsf{supp}(c^1) = \{1,2\} \\ & \mathsf{supp}(c^2) = \{1,3\} \\ & \mathsf{supp}(c^3) = \{1,4\} \\ & \mathsf{supp}(c^4) = \{1,5\} \end{aligned}$$

Soohak Choi (Hyun Kwang Kim and Dong Yeol Oh) Structures and lower boundsfor binary covering arrays Institute of Mathematical Sciences, Ewha Womans University

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ● ●

	Binary 2-covering array	Tables
	000	
Binary 2-covering array		

Definition

The standard maximal binary 2-covering array C of size m is an $m \times {\binom{m-1}{\lfloor \frac{m}{2} \rfloor - 1}}$ matrix with (1) the first row of C is all 1 row, (2) the columns of the remaining matrix is the family of all vectors of $(\lfloor \frac{m}{2} \rfloor - 1)$ 1's and $(m - \lfloor \frac{m}{2} \rfloor)$ 0's.

Example 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 0 0 0 1 1 1 0 0 0 0 1 0 0 1 0 1 1 0 0 0 0 1 0 0 1 0 1 0 0 0 1 0 0 1 0 1 1 1

	Binary 2-covering array	Results	
		00000	
Results			

(E. W. Hall 1935) Suppose we have a bipartite graph G with two vertex sets V_1 and V_2 . Suppose that

$$|\Gamma(S)| \ge |S|$$
 for every $S \subset V_1$.

Then G contains a complete matching.

	Binary 2-covering array	Results	
		00000	
Results			

Lemma

Let C be a 2-covering array of size m and degree n with $wt(c^i) \leq \lfloor \frac{m}{2} \rfloor$ for all $1 \leq i \leq n$. Put $s = \min_{1 \leq i \leq n} wt(c^i)$. For any integer s' satisfying $s < s' \leq \lfloor \frac{m}{2} \rfloor$, there is a 2-covering array C' of size m and degree n with $s' \leq wt(c'') \leq \lfloor \frac{m}{2} \rfloor$ such that $supp(c^i) \subseteq supp(c'^i)$ for all $i \in [n]$.

Corollary

Let C be a 2-covering array of size m and degree n with wt(c^i) $\leq \lfloor \frac{m}{2} \rfloor$ for all $i \in [n]$ and wt(c^i) $< \lfloor \frac{m}{2} \rfloor$. Then there is a 2-covering array C' of size m and degree n with wt(c^{ij}) $= \lfloor \frac{m}{2} \rfloor - 1$ and wt(c^{ii}) $= \lfloor \frac{m}{2} \rfloor$ for all $i \in [n]$ and $i \neq j$ such that supp(c^i) \subseteq supp(c^{ii}) for all $i \in [n]$.

	Binary 2-covering array	Results	
		000000	
Results			

(A. J. W. Hilton, E. C. Milner 1967) Let $2 \le k \le \frac{m}{2}$. Let C be a binary 2-covering array of size m such that $wt(c^i) \le k$ for any column of C and $\bigcap_{1 \le i \le n} supp(c^i) = \emptyset$. Then

$$n \leq d = 1 + \binom{m-1}{k-1} - \binom{m-k-1}{k-1}.$$

There is strict inequality if $wt(c^i) < k$ for some $i \in [n]$.

	Binary 2-covering array	Results	
		000000	
Results			

Let $m \ge 4$, $k = \lfloor \frac{m}{2} \rfloor$, and $\binom{m-1}{k-1} + m - 3k + 1 \le n \le \binom{m-1}{k-1}$. If an $m \times n$ matrix C over B_2 is a 2-covering array, then C is equivalent to the matrix made from deleting columns of standard binary 2-covering.

	Binary 2-covering array	Results	
		000000	
Results			

Corollary

Every maximal binary 2-covering arrays is equivalent to the standard maximal 2-covering array.

Corollary

If $m \ge 6$ and $n = {\binom{m-1}{\lfloor \frac{m}{2} \rfloor - 1}} - 1$, then every $m \times n$ binary 2-covering array *C* is made from deleting a column of the standard maximal 2-covering array.

- 10 × 5, 12 × 11 binary optimal 3-covering and 24 × 12 binary optimal 4-covering arrays are unique.
- There is no 48×13 binary 5-covering array.

	Binary 2-covering array	Results	
		000000	
Results			

If
$$m \ge 7$$
, $k = \lfloor \frac{m}{2} \rfloor$, and $\binom{m-1}{k-1} + m - 3k + 1 \le n \le \binom{m-1}{k-1}$, then

$$CAN(3, n+1, 2) \geq \begin{cases} 2CAN(2, n, 2) + 1 & \text{if } m \text{ is odd} \\ 2CAN(2, n, 2) + 2 & \text{if } m \text{ is even} \end{cases}$$

Soohak Choi (Hyun Kwang Kim and Dong Yeol Oh) Structures and lower boundsfor binary covering arrays ◆□ > ◆□ > ◆ □ > ◆ □ > □ = のへで

	Binary 2-covering array	Tables
		000
Tables		

Table 1 : The number of covering arrays CA(6; 2, n, 2).

п	32	33	34	35
CA(8; 2, n, 2)	5	2	1	1

Table 2 : The number of covering arrays CA(8; 2, n, 2).

		Results 000000	Tables O●O
Tables			

n	Lower Bound of Roux	Lower Bound of C.,Kim, Oh	Upper Bound
4	8	8	8
5	10	10	10
6-11	12	12	12
12	14	14	15
13-16	14	15	16-17
17-31	16	16	18-24
32-36	16	18	24
37-53	18	18	24-29
54-57	18	19	29-31
58-121	20	20	31-33
122-127	20	22	33
1710-1717	28	30	66-67
6428-6436	32	34	74

Table 3 : Tables of ${\cal CAN}(3,n,2).$

Soohak Choi (Hyun Kwang Kim and Dong Yeol Oh)

Structures and lower boundsfor binary covering arrays

Institute of Mathematical Sciences, Ewha Womans University

э.

< 日 > < 圖 > < 国 > < 国 > -

	Binary 2-covering array	Tables
		000
Tables		

Thank you for your attention!

