Structures and lower bounds for binary covering arrays

Soohak Choi
(Hyun Kwang Kim and Dong Yeol Oh)
Institute of Mathematical Sciences, Ewha Womans University

November 16

Notations

- $B_{q}=\{0,1, \ldots, q-1\}$.
- For $u=\left(u_{1}, u_{2}, \ldots, u_{n}\right) \in B_{q}^{n}$,
- $\operatorname{supp}(u)=\left\{i \mid u_{i} \neq 0\right\}$.
- $w t(u)=|\operatorname{supp}(u)|$.

■ $[n]=\{1,2, \ldots, n\}$.
■ For $C=\left(c_{i j}\right)$ over B_{q}, c^{i} is the i-th column of C.

Definition

An $m \times n$ matrix C over B_{q} is called a t-covering array (or, a covering array of size m, strength t, degree n, and order q) if, in any t columns of C, all q^{t} possible q-ary t-vectors occur at least once. We denote such an array by $C A(m ; t, n, q)$.

Example

The following matrix is a 2-covering array over B_{2}.

1	1	1	1
1	0	0	0
0	1	0	0
0	0	1	0
0	0	0	1

Definition

An $m \times n$ matrix C over B_{q} is called a t-covering array (or, a covering array of size m, strength t, degree n, and order q) if, in any t columns of C, all q^{t} possible q-ary t-vectors occur at least once. We denote such an array by $C A(m ; t, n, q)$.

Applications

- circuit testing,
- intersecting codes,
- data compression.
- The main problem is to optimize one of the parameters m and n for given value of the other:
(a) find the minimum size $\operatorname{CAN}(t, n, q)$ of a t-covering array of given degree n over B_{q};
(b) find the maximum degree $\overline{C A N}(t, m, q)$ of a t-covering array of given size m over B_{q}.
$\square q^{t} \leq \operatorname{CAN}(t, n, q) \leq q^{n}$.
- Rènyi (for m even), and independently Katona, and Kleitman and Spencer (for all m) showed that $\overline{\operatorname{CAN}}(2, m, 2)=\binom{m-1}{\left\lfloor\frac{m}{2}\right\rfloor-1}$.
- Johnson and Entringer showed that $\operatorname{CAN}(n-2, n, 2)=\left\lfloor\frac{2^{n}}{3}\right\rfloor$.

■ Colbourn et al. give all the known upper and lower bounds for covering arrays up to degree 10 , order 8 and all possible strengths, but their classification results are much more limited.

Theorem

(G. Roux 1987)
$\operatorname{CAN}(t+1, n+1, q) \geq q \operatorname{CAN}(t, n, q)$,
$\operatorname{CAN}(3,2 n, 2) \leq \operatorname{CAN}(3, n, 2)+\operatorname{CAN}(2, n, 2)$.

Example

The following matrix is a 2 -covering array over B_{2}.

1	1	1	1
1	0	0	0
0	1	0	0
0	0	1	0
0	0	0	1

Example

1	0	0	0
1	1	1	1
0	1	0	0
0	0	1	0
0	0	0	1

Permutation of the rows

1	1	1	1
0	1	0	0
1	0	0	0
0	0	1	0
0	0	0	1

Permutation of the columns
$\begin{array}{llll}0 & 1 & 1 & 1\end{array}$
$0 \quad 0 \quad 0 \quad 0$
$\begin{array}{llll}1 & 1 & 0 & 0\end{array}$
$\begin{array}{llll}1 & 0 & 1 & 0\end{array}$
$\begin{array}{llll}1 & 0 & 0 & 1\end{array}$
Permutation of the values of any column

Definition

Two covering arrays C and C^{\prime} are equivalent if one can be transformed into the other by a series of operations of the following types:
(a) permutation of the rows;
(b) permutation of the columns;
(c) permutation of the values of any column.

- Katona proved that maximal binary covering arrays of strength 2 are uniquely determined up to equivalence.
- Johnson and Entringer showed that $\left\lfloor\frac{2^{n}}{3}\right\rfloor \times n$ binary covering arrays of strength $n-2$ are uniquely determined up to equivalence.

Goals

- Classify the structures of some optimal binary 2-covering arrays.
- Improve the lower bound of Roux on $\operatorname{CAN}(t, n, q)$ when $t=3, q=2$.

■ For $u \in B_{2}^{n}, \bar{u}=\left(\bar{u}_{1}, \ldots, \bar{u}_{n}\right)$ where

$$
\bar{u}_{i}= \begin{cases}1, & \text { if } u_{i}=0 ; \\ 0, & \text { if } u_{i}=1 .\end{cases}
$$

- $u \in B_{2}^{n} \Leftrightarrow \operatorname{supp}(u) \subseteq[n]$

■ The following statements are equivalent.

- C is a binary t-covering array.
- $\cap_{k=1}^{t} X_{i_{k}} \neq \emptyset$ for $\left\{i_{1}, \ldots, i_{t}\right\} \subseteq[n]$, where X_{k} is either $\operatorname{supp}\left(c^{k}\right)$ or $\operatorname{supp}\left(\overline{c^{k}}\right)$.

$$
C=\begin{array}{ccccc}
& c^{1} & c^{2} & c^{3} & c^{4} \\
1 & 1 & 1 & 1 & 1 \\
2 & 1 & 0 & 0 & 0 \\
3 & 0 & 1 & 0 & 0 \\
4 & 0 & 0 & 1 & 0 \\
5 & 0 & 0 & 0 & 1
\end{array}
$$

$$
\operatorname{supp}\left(c^{1}\right)=\{1,2\}
$$

$$
\operatorname{supp}\left(c^{2}\right)=\{1,3\}
$$

$$
\operatorname{supp}\left(c^{3}\right)=\{1,4\}
$$

$$
\operatorname{supp}\left(c^{4}\right)=\{1,5\}
$$

$$
C=\begin{array}{ccccc}
& c^{1} & c^{2} & c^{3} & c^{4} \\
1 & 1 & 1 & 1 & 1 \\
2 & 1 & 0 & 0 & 0 \\
3 & 0 & 1 & 0 & 0 \\
4 & 0 & 0 & 1 & 0 \\
5 & 0 & 0 & 0 & 1
\end{array}
$$

$$
\operatorname{supp}\left(c^{1}\right)=\{1,2\}
$$

$$
\operatorname{supp}\left(c^{2}\right)=\{1,3\}
$$

$$
\operatorname{supp}\left(c^{3}\right)=\{1,4\}
$$

$$
\operatorname{supp}\left(c^{4}\right)=\{1,5\}
$$

Definition

The standard maximal binary 2-covering array C of size m is an $m \times\binom{ m-1}{\left\lfloor\frac{m}{2}\right\rfloor-1}$ matrix with
(1) the first row of C is all 1 row,
(2) the columns of the remaining matrix is the family of all vectors of

$$
\left(\left\lfloor\frac{m}{2}\right\rfloor-1\right) 1 \text { 's and }\left(m-\left\lfloor\frac{m}{2}\right\rfloor\right) \text { 0's. }
$$

Example

1	1	1	1	1	1	1	1	1	1
1	1	1	1	0	0	0	0	0	0
1	0	0	0	1	1	1	0	0	0
0	1	0	0	1	0	0	1	1	0
0	0	1	0	0	1	0	1	0	1
0	0	0	1	0	0	1	0	1	1

Theorem

(E. W. Hall 1935)

Suppose we have a bipartite graph G with two vertex sets V_{1} and V_{2}. Suppose that

$$
|\Gamma(S)| \geq|S| \quad \text { for every } S \subset V_{1} .
$$

Then G contains a complete matching.

Lemma

Let C be a 2-covering array of size m and degree n with $w t\left(c^{i}\right) \leq\left\lfloor\frac{m}{2}\right\rfloor$ for all $1 \leq i \leq n$. Put $s=\min _{1 \leq i \leq n} w t\left(c^{i}\right)$. For any integer s^{\prime} satisfying $s<s^{\prime} \leq\left\lfloor\frac{m}{2}\right\rfloor$, there is a 2-covering array C^{\prime} of size m and degree n with $s^{\prime} \leq w t\left(c^{\prime i}\right) \leq\left\lfloor\frac{m}{2}\right\rfloor$ such that $\operatorname{supp}\left(c^{i}\right) \subseteq \operatorname{supp}\left(c^{\prime i}\right)$ for all $i \in[n]$.

Corollary

Let C be a 2-covering array of size m and degree n with $w t\left(c^{i}\right) \leq\left\lfloor\frac{m}{2}\right\rfloor$ for all $i \in[n]$ and $w t\left(c^{j}\right)<\left\lfloor\frac{m}{2}\right\rfloor$. Then there is a 2 -covering array C^{\prime} of size m and degree n with $w t\left(c^{\prime j}\right)=\left\lfloor\frac{m}{2}\right\rfloor-1$ and $w t\left(c^{\prime i}\right)=\left\lfloor\frac{m}{2}\right\rfloor$ for all $i \in[n]$ and $i \neq j$ such that $\operatorname{supp}\left(c^{i}\right) \subseteq \operatorname{supp}\left(c^{\prime i}\right)$ for all $i \in[n]$.

Theorem

(A. J. W. Hilton, E. C. Milner 1967)

Let $2 \leq k \leq \frac{m}{2}$. Let C be a binary 2 -covering array of size m such that $w t\left(c^{i}\right) \leq k$ for any column of C and $\bigcap_{1 \leq i \leq n} \operatorname{supp}\left(c^{i}\right)=\emptyset$. Then

$$
n \leq d=1+\binom{m-1}{k-1}-\binom{m-k-1}{k-1} .
$$

There is strict inequality if $w t\left(c^{i}\right)<k$ for some $i \in[n]$.

Theorem

Let $m \geq 4, k=\left\lfloor\frac{m}{2}\right\rfloor$, and $\binom{m-1}{k-1}+m-3 k+1 \leq n \leq\binom{ m-1}{k-1}$. If an $m \times n$ matrix C over B_{2} is a 2 -covering array, then C is equivalent to the matrix made from deleting columns of standard binary 2 -covering.

Corollary

Every maximal binary 2-covering arrays is equivalent to the standard maximal 2-covering array.

Corollary

If $m \geq 6$ and $n=\binom{m-1}{\left\lfloor\frac{m}{2}\right\rfloor-1}-1$, then every $m \times n$ binary 2 -covering array C is made from deleting a column of the standard maximal 2-covering array.

- $10 \times 5,12 \times 11$ binary optimal 3 -covering and 24×12 binary optimal 4 -covering arrays are unique.
- There is no 48×13 binary 5 -covering array.

Theorem

If $m \geq 7, k=\left\lfloor\frac{m}{2}\right\rfloor$, and $\binom{m-1}{k-1}+m-3 k+1 \leq n \leq\binom{ m-1}{k-1}$, then

$$
\operatorname{CAN}(3, n+1,2) \geq \begin{cases}2 \operatorname{CAN}(2, n, 2)+1 & \text { if } m \text { is odd } \\ 2 \operatorname{CAN}(2, n, 2)+2 & \text { if } m \text { is even }\end{cases}
$$

n	6	7	8	9	10
$C A(6 ; 2, n, 2)$	4	3	1	1	1

Table 1 : The number of covering arrays $C A(6 ; 2, n, 2)$.

n	32	33	34	35
$C A(8 ; 2, n, 2)$	5	2	1	1

Table 2 : The number of covering arrays $C A(8 ; 2, n, 2)$.

n	Lower Bound of Roux	Lower Bound of C.,Kim, Oh	Upper Bound
4	8	8	8
5	10	10	10
$6-11$	12	12	12
12	14	14	15
$13-16$	14	15	$16-17$
$17-31$	16	16	$18-24$
$32-36$	16	18	24
$37-53$	18	18	$24-29$
$54-57$	18	19	$29-31$
$58-121$	20	20	$31-33$
$122-127$	20	22	33
\ldots	\ldots	\ldots	\ldots
$1710-1717$	28	30	$66-67$
\ldots	\ldots	\cdots	\cdots
$6428-6436$	32	34	74

Table 3 : Tables of $\operatorname{CAN}(3, n, 2)$.

Thank you for your attention!

